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Abstract

In this paper we show how Probabihstic Cheap Talk mechanisms (PCT
mechanism) can be used to resolve a variety of classical economic prob-

lems. We focus on economic applications in public finance and industrial

organization. In all but one of the problems we consider, there is a sin-

gle dominate strategy or nash equilibrium to the one-shot game which is

Pareto dominated by other feasible allocations. We show that adding a

PCT structure transforms these problems into multi-stage games with a

single Pareto dominant, subgame perfect equilibrium. We accomplish this

while maintaining the assumptions that moves are made simultaneously,

are unobservable to any outside agency, and that payoffs are distributed

once and only once.





1. Introduction

In this paper we show how ProbabiHstic Cheap Talk mechanisms (PCT mecha-

nisms) can be used to resolve a variety of classical economic problems. In a compan-

ion paper, Chakravorti, Conley and Taub (1992) we show how an abstract one-shot

prisoner's dilemma can be resolved using this type of mechanism. Here, we focus on

economic appUcations in public finance and industrial organization. In all but one

of the problems we consider, there is a single dominant strategy or Nash equilib-

rium to the one-shot game which is Pareto dominated by other feasible allocations.

We show that though the use of a PCT mechanism, the equilibrium set can be ex-

panded to include Pareto optimal outcomes. Better still, we show the probabilistic

element can be manipulated to generate an equilibrium set with a single Pareto

dominant, efficient, individually rational, subgame perfect equilibrium allocation.

If fact, in most cases, the equilibrium set can be reduced to consist of only the

intuitively appealing Pareto efficient allocation, and the one shot Nash equilibrium

allocation. This is accomplished with a mediator who need not be able to observe

the strategy choices of the agents, and who knows very little about the economic

parameters of the economy. Agents are assumed to know nothing about the other

agent's whatsoever.

We retain the basic assumptions of the one-shot PD game in these applications.

In particular, we assume that the moves are made simultaneously, and so agents

must commit to moves in ignorance of the other agents' moves. Also, we exclude

the possibility that an outside agency can impose punishments on agents for failing

to behave cooperatively. This means that agents cannot use continent strategies,

or sign binding contracts. Finally, the applications we discuss are fundamentally

one-shot in nature. Thus, we can't appeal to the repeated games literature for a

resolution.



Our objective here is slightly different from the traditional implementation ap-

proach. Implementing efficient allocations in a public goods economy is problem

with a long history. Jackson and Moulin (1992) give an excellent summery of this

literature and propose a very interesting mechanism for implementing a nice class

of cost allocation rules. In general, these mechanisms can be quite complicated

and unnatural. In addition, there is always a tension between dominant strategy

implementation, and the requirements of feasibiHty, individual rationality, and sin-

gle valuedness of the equilibrium set. The informational requirements can also vary

quite widely. Our approach is to start with what seems to us to be a simple and nat-

ural mechanism that can be applied to any one-shot game, and explore the subgame

perfect equilibrium allocations. We share with the implementation literature the

goal of getting efficient and otherwise desirable allocations as equilibrium outcomes

of a mechanism. However, we don't try to implement any decision rule as such.

Instead, we show how the PCX mechanism reduces set of equilibrium allocations to

the point the problem is reduce to a trivial coordination exercise.

The remainder of the paper is organized as follows. In section 2, we describe a

general PCT mechanism. In section 3, we describe a simple public goods problem.

We show how the PCT mechanism can be used to generate equal sharing of cost

by all agents as the unique Pareto efficient subgame perfect equilibrium. In section

4, we take on the somewhat more difficult public goods revelation problem. We

show how agents can be made to truthfully report the benefit they receive from

a public good (which is private information), and then share the cost of the good

in proportion their report. In section 5, we look at an externality problem. We

show how efficient provision of a positive externality, or abatement of a negative

externality, can be generated through the use of a PCT mechanism. In section 6,

we look at Bertrand oligopoly. We show that all firms setting price at the monopoly

level is the unique Pareto optimal subgame perfect equilibrium of a PCT extension

of a one-shot game. In section 7, we depart from the mechanism design approach to



show how the addition of PCT resolve the chain store paradox. Ah of these results

are achieved using a mediator who knows little about the economic parameters of

the game, and who has only the most limited ability to monitor agents' strategy

choices. Section 8 concludes.



2. Probabilistic Cheap Talk Mechanisms

In this section we define an abstract PCT mechanism. First, consider a one-

shot game G =< N,M,v >. Let N be the set of agents. Let M^ be the set of

moves available to agent i G A''. Let v' : M^ x . . . x M" = M ^ )R", be the payoff

function for i E A'^.

Informally, the PCT extension of the one-shot game is as follows. Agents

simultaneously choose moves. These choices are unobservable to any third party

(such as a mediator). We restrict attention to this class of games because they

cannot be solved by having the agents sign binding contracts. The mediator has

a randomization device which he uses to decide between two alternatives: Cheap

Talk (CT) and DeadLine (DL). If he chooses CT, the moves made by the agents are

payoff irrelevant and are observed by everyone but the mediator. Play then goes

to the next round. If he decides on DL then the moves are used to distribute the

payoffs from the one-shot game. Play continues until DL is realized. We assume

that the mediator is not able to observe the moves sent by the agents at any stage.

The only thing he is able to observe is whether all agents make the same move as in

the previous round of play (event a) or that at least one agent has revised his move

(event l3). We can imagine that agents submit their moves in sealed envelopes, and

that the mediator can tell when an agent submits a new envelope.

Denote the number of rounds of ex post cheap talk by t E {1,2...}. The

history of talk at t is denoted by ht. Let 7i be the set of all possible histories over

all t E {1,2,...}. Let Tit be the space of all possible histories at time t. We shall

set /ii = 0. A strategy profile for i E N is a, mapping 6' = {s\ : Tit —^ M'}^o- Let

5* be the class of all possible strategy profiles.

If for some t' < t the agents have chosen m E M in round t' , we shall say that

the resulting history ht contains m at t' . We shall write this as m ^t' ht- A history



/i € 7Y is said to be stationary if

3 m G M s.t. Vt 6 {1,2,...}, and V t' < t,m £«/ /i^.

If /i E "H is stationary, then the restriction of h to the first t rounds, ht, is also said

to be stationary. Note that event a generates a stationary history. Let TY'^ denote

the sub-class of stationary histories generated by event a.

We now define two subclasses of strategies. Let Sm G 5 be the class of station-

ary trigger strategy profiles in which agents play a stationary strategy, and respond

to any deviation from stationary by going to a "'punishment" move the next round;

Sm = {sm G 5}

where for all h £?{, and all f G {1.2, . . .}

/, ,^ _ ) Sm t-\{fit-\)- if 3 m G M s.t. 771 E(-2 ^^'< and 7n £t-\ h*

[ m, otherwise.

Let S^ C Sm be the class of enforcing trigger strategy profiles in which agents play

a particular stationary strategy and respond to any deviation from this strategy

by going to a punishment move next round. The difference between these two is

that in stationary trigger strategies, an agent may or may not require that other

agents make a particular move in the first round. However, he always goes to the

punishment move if any agent makes a different move in any subsequent round.

In an enforcing trigger strategy, punishment is induced not only by nonstationary

play, but also by deviation from a specific move by the other players, even in the

first round. Formally:

where for all h e H. and allt E {1,2 },

m, if m E<-i ht;

' m, otherwise.



Our convention is to have the superscripted move (if any) to be the proposed sta-

tionary one, while the subscripted move (if any) is the punishment move. Although

our attention will focus on enforcing stationary trigger strategies, the former class

is need for technical reasons in the proofs of the lemmata that follow.

For any i G A'^, and any m E M let rn'''°P^ denote the set of optimal one-shot

defection from m for agent i.

m'^^P' = {m^ G M'
|
Vrn' G M\v\m\ . . . ,m\ . . . ,m'') > u'(m', . . . , m', . . . , m")}.

In the applications given below, this will always be single valued. In the general

case, it is sufficient to take any element of this set to prove the lemmata below.

Note that if m is a Nash equilibrium, then m''"''' = m'.

We are now able to give a formal definition. A PCX mechanism is a profile

S = {6t : ht -^ [0,1] }^o such that for alH G {1, 2, . . .},

6 \{ht-x^W

Given a history /i^, St{ht) is the probability that DL is realized at round t. Thus,

if the game continues to round t, and the history has been stationary up until then

(that is, up to t — 1,) then the game ends with probabihty 6. However, the game

ends with certainty, and the payoffs are distributed, on the first round after any

non-stationary play is seen.^ Let r{G,S) denote the multi-stage game induced by

the PCT mechanism, ^, given the underlying one-shot game, G

For any agent i G N, participating in a strategy profile s ^ S yields the

following expected payoff at time i, given history h:

Stihtyistiht))

We use 6 to mean both the profile of maps from histories into probabilities, and the actual proba-

bility with which the game ends if the history is stationary. This is a slight abuse of notation, but it

should not cause any confusion in context. Also note that we immediately restrict attention to the

class of profiles that enforce stationary. We call this class Do in a companion paper Chakravorti,

Conley and Taub (1992)



+ (1 - St{ht))St+i{ht+i}v'{st+i{ht+i))

+{1 - St{ht))(l - St+i(ht+i))St+2iht+2)v'(st+2{ht+2)) + .

Therefore, define the expected value of strategy s to agent i at time t. El : S x Tit

^+ as

Eiis.ht) = \St{ht)v'{stiht))+ Y,
k=t+l

k-\

Skihk)v'{sk{hk))l[(l-SAh,
r=t

where the histories after t are generated by equiHbrium play of s given hf. A strategy

profile s E S is subgame perfect equilibrium (SPE) of the game Y{G,b) if

Vie {1,2,...}, Vz GiV, VJ' eS\ and ^ h e H,

El{s,ht)>El{s\...,s\..,s\ht)).

The following lemmata will be useful in proving the results in subsequent sec-

tions. The first of these simply says that if a strategy profile is an SPE of a game,

then it must a stationary trigger strategy. Note that this means that the only

equilibrium histories are stationary histories.

Lemma 1. Let m E M be the unique Nash equihbrium to a one-shot game G. If

a strategy, s, is an SPE ofTiG.S), then there is s,^ G Sm such that s = s^-

Proof/

First, in any SPE strategy, it must be the case that rn is played on the round

after any nonstationary move occurs. This is because by construction of the PCT

mechanism, the game ends with certainty in the next round, and by hypothesis, m

is the only Nash equilibrium in such a subgame.

Second, in any SPE, all agents must make the same move each round if the

history has been stationary. Suppose instead it was not optimal to play a stationary

strategy. Then suppose that the history ht-\.2 is stationary up to t, with agents



playing rh E M each round. However at round t + 1 the equilibrium move is

rh ^ jfi. The expected payoff to agent j from abiding by the "equilibrium" strategy

in this subgame is:

6v\{m)-\-{l -6)v\rii).

This is because if the PCT game continues until round i, there is a probability of

8 that the game ends in round t -\- \. If the game does not end in round t + 1, the

mediator ends the game with certainty in ^ + 2 due to the nonstationary play. Thus

the probability that the game ends at ^ + 2 is 1 — (5. Assume that m ^ rh. Then

the expected payoif to agent j from deviating optimally in round t + 1 is

Sv^[m\. . .
m-'-^P',

. .
.

, m") + (1 - 8)v^{m).

But since m is the only one-shot Nash equilibrium, this defection is superior, and

the strategy could not have been an SPE.

The argument is similar if it happens that m = rh. In this case, agent j can

improve his expected payoff by deviating in round t. Since the he receives the Nash

payoffs in t + 1 anyway, there is no incentive not to defect in the previous round i,

and so s could not have been an SPE.

The next lemma shows that for any enforcing trigger strategy, s^ it is a best

response for agents to invoke the punishment move, m, if there is any deviation the

move fh. Note that this lemma does not say that m' is a best response to m~\^

Lemma 2. Suppose that rh G M is the only Nash equihbrium of a game G and

consider any enforcing trigger strategy 5|^. For any t E {1,2,...}, suppose also that

ht+i € 'Ht-{.i is such that for all t' < t ffi G<' ht+i, but m ^ m G< Ti-t+i- Then for

- We follow the convention that rn ' = {jn , . . . , m^ , rn-!=/,.>! ,«»-l ,„'+!



all i G N, is a best response in this subgame to abide by the trigger strategy and

play m' in round t + 1 and all future rounds.

Proof/

For ^ = 1, under the hypothesis, /i2 = {^} where for at least one agent j,

mJ ^ fh-' . Note that this is history is not consistent with the equihbrium play of

the trigger strategy, but is trivially stationary. However, under the trigger strategy,

all agents other than j respond to this history by playing m~^ in the second round.

If the deadline happens not to hit, and the game does not end in the second round,

then it certainly ends in the third due to the non-stationary play. Then clearly it

is a best response for all agents i G N to abide by this trigger strategy and play m'

in the second and third rounds.

Finally for any t > 2, suppose h( satisfies the hypothesis. Then the history is

stationary at m up until t — 2. but at ^ — 1 at least one agent j , makes the move

rh^ ^ 7nJ
. Again, if the deadline happens not to hit in round t — 1, it certainly

ends in round t due to the non-stationary play. Then clearly it is a best response

all agents i. G N to abide by this trigger strategy and play m-^ in this last round.

The next lemma shows that all equilibrium histories can be generated by en-

forcing trigger strategies, and so attention can be restricted to this class.

Lemma 3. Let rh G M be the unique Nash equilibrium to a one-shot game, G. Let

•Sm G 5m be an SPE. Then h G 'H°' , with rh Gi h, is a possible equilibrium history

generated by this strategy if and only if s'^ G S^ is also a SPE.

Proof/

It is immediate that h G W^ with m Gi /i is a possible equilibrium history

generated by some strategy s^ G Sm if
-^'^l

^ S^j is also a SPE since s'^^ G Sm-

To see the other half of the implication, suppose that Ii G Ti^ . with m Gi h,



is a possible equilibrium history generated by some strategy Srh € Sm but that

5^ E S^ was not an SPE. Then for some t £ {1,2, . . .}, and some h^ G 7i, there is

an agent i ^ N and a strategy s\ such that

^li^'fiiU ^ ^ ^'t^ ^ ^'^'H ^^t) > El{s'^,ht).

Suppose first that for all t' < t, rh Gf h*^ But since the future play of both 5^

and Sjhi are the same given this history, it follows that:

^ty^7h,f • • • i-^ti • • • i-^m.M "n — ^ty^m,t^- ^^t-i- >^m,ti "'i

which contradicts the hypothesis that 5^1 is an SPE.

Suppose instead that for some t' < t,m Gf h\ and m 7^ m. Without loss of

generality, assume that round t' is the first time any move other than rh is seen.

Then by lemma 2, it is a best response for agent i to abide by the trigger strategy

and invoke the punishment move in all rounds after t'

.

Thus, Srh is an SPE, then 5'^ also has all the agents playing a best response is

every subgame, and is therefore an SPE equilibrium as well.

10



3. A Hand Raising Mechanism for the Provision of Discrete Public Goods

Consider the following one-shot game G'*'" =< N,M. v >. Each agent i G N,

chooses between two moves: M' = {HO,FR} (Help Out, or Free Ride). Let

^HO : M —> {0, . . . , n} be a function that gives the number of agents that agree

to help out for in any given profile of moves. Then for all i G iV, and all m G M,

v'{rn) =
<^ B' if m' = FR and ^HO{m) ^

We interpret B^ as the benefit that agent i stands to receive if a public project is

undertaken, and C as the cost of the project We assume that for all i G N,C >

B^ > 0, and C < ^[Li -^'- This means that no single agent would be wilhng to

build the project on his own, but the sum of the benefits to all agents exceeds the

cost.

This is a very simple model of a mechanism to produce and pay for a discrete

level of a public good. To fix the idea, suppose that a group of neighbors is con-

sidering building a commvuiity playground for the local children. By agreeing to

help out with the playground, an agent promises to show up at the proposed site

and share in the effort needed to complete the project with the other agents who

have agreed to do the same. This seems to be a fairly common mechanism in the

real world. For example, when we are asked to volunteer for academic committees,

the presumption is that all members will share in the work equally, and continue to

work until the task is completed.

The difficulty, of course, is in overcoming the free rider problem. In the one-

shot game, in which the moves are simultaneous, it is a dominant strategy to free

ride. Also notice that building a playground is fundamentally a one-shot problem.

It does not make sense to think about building an infinity of playgrounds. We

therefore cannot appeal to the repeated games literature for help.

11



A common feature of these mechanisms in the real world that there is often

a probabilistic element involved. That is, not every project that we are asked to

volunteer for really gets off the ground right away. People walk around saying we

should build a playground in our neighborhood, and pledging that they will help

if the project ever gets started. These pledges are cheap talk that people use as a

signaling device to get others to participate. At some point, the coalition comes

together and the last set of pledges are called in. In this section we show how this

element of random delay, which leads to probabilistic cheap talk, can help coalitions

of agents to overcome the free rider problem.

Consider the incentive problem facing any particular agent i when all the other

agents play their part of an arbitrary trigger strategy s'^ E 5^/. Since universal

free riding is the only Nash equilibrium of G'*^, by lemma 1 we can assume that

the punishment move is m = (FR, . . . , FR). If m' — FR, then i is being asked to

play his one-shot dominant strategy. Then it is trivially a best response in every

subgame for him to play his part in the trigger strategy equilibrium. On the other

hand, if m' = HO, he finds that playing his part of this strategy is a best response

if and only if the following condition is met:

C
B' > SB\

#HO{m) -

The left hand side of this expression is i's payoff from playing along with the trigger

strategy. By so doing the agent i guarantees himself this payoff whenever the dead-

line happens to fall. The right hand side is his payoff from the optimal deviation,

free riding from the first round of the subgame. If the deadline hits in round one

(which is a probability 6 event), then he gets the full benefit of the public good,

B', without paying any of the cost of the project. If the game does not end, then

all other agents free ride in the remaining rounds. This nonstationary play induces

the mediator to end the game with certainty in the third round. Thus, the only

12



possible benefit from defecting from the trigger strategy is free riding in the first

round in the event that the deadhne happens to hit. Then clearly the agent will

abide by the trigger strategy if and only if:

^

First, consider the case of identical agents. Let

6* = I
^

B\N\

and m = {HO,.... HO).

Lemma 4. Suppose all agents in the game G^^are identical. Then for the PCT

extension T{G'''' J*), s'^ and s^ are the only SPE.

Proof/

Clearly, s^ is an SPE for any S since m is the only Nash equilibrium of the

one-shot game. To see that 5|? is also an SPE, consider any i G A^ and any h ^ Ti.

This history could have evolved in one of two ways.

Suppose first that the game has not ended at any given t, and suppose that all

agents have been playing HO each round. Then by construction of <^* it is a best

response for i to play HO in round t.

Suppose on the other hand that at some t G {1,2,...}, some agent j plays FR.

Then by lemma 2 it is a best response for all agents to abide by the trigger strategy

and play FR in all remaining rounds.

Finally, suppose there was another trigger strategy 5^ that is an SPE. But

then ^HOirh) > iJ^HO{m) and so

8*B = B >B
#HO{m) i^HO{m]

13



Thus it would be optimal for every agent to defect from any other trigger

strategy.

Theorem 1. Suppose all agents in the game G^^ are identical. Then for the

PCT extension r{G''''J*), {{B - y^,...,5- -p^), (0, . . . 0)} are the only SPE

payoffs.

Proof/

By lemma 4, .s|^ and 5|? are the only SPE trigger strategies. Then by lemma

3,

h = {hen\ Vi G {l,2,...},m Et h),

and

h^iheni V^ G {l,2,...},7n G< /i},

are the only SPE histories. Thus

are the only SPE payoffs.

Thus, if all agents derive the same benefit from the project, we can choose S

high enough so that everyone helping out, and everyone trying to free ride (and the

project not being undertaken) are the only an SPE outcomes. Then since everybody

helping out strongly Pareto dominates everybody free ridding, it should be easy for

agents to coordinate on the cooperative equilibrium.

Now consider the case of nonidentical agents? We know that an agent is better

off helping out than free riding in a trigger strategy enforcing m if:

B' > 8B\
#HO{m) -

14



Assume that the agents are ordered so that agents with a lower index place more

value on the project. For simplicity, assume that all agents receive different benefits.

Thus 51 > 52 > ... > B".

For any J G {1. . .
.

, A^}, let m"^ denote the move in which the first J agents

help out and the rest free ride:

m^ = {m^-^ m^'-', m^-'+^ . .
.

, m"^'". ) = [HO. . . . HO, FR.... FR).

For any J € {1, . . . , -V} make the following definition:

«- = i- ^
BJH^HOimJ)'

Finally, define ./* to be:

r = {J {I .V}
1
yij^ >6^}.

Note that ./* may not be always be a singleton, but is generically unique. We

will assimae in the following that J* is unique.

Lemma 5. Suppose that J* is unique. Then for the PCT extension r{G^^,S'^ ),

3^"'' and s^ are the only SPE.

Proof/

Clearly, 5^ is an SPE for any S since m is the only Nash equilibrium of the

one-shot game.

J' .1 .

For all agents i > j*. playing strategy .s? is obviously a best response in

any subgame since they play FR in each romid. So consider any agent j < j* and

any h £ 7i. This history could have evolved in one of two ways.

Suppose the game has not ended at any given t, and suppose all other agents

have been playing the move given by m"'* each round. Then by construction of S'^

it is a best response for j to play HO.

15



Suppose on the other hand that at some t E {1,2,...}, some agent j < j* plays

FR. Then by lemma 2 it is a best response for all agents to abide by the trigger

strategy and play FR in all remaining rounds.

Finally, suppose there is another trigger strategy s^ that was an SPE. To see

that this could not be observe that for any I ^ J

6^'B' >S^B' = B'

-

^
#HO{m^)

Thus it woiild be optimal for agent i to defect from this strategy. Obviously,

for any J . the same argument would hold for any coalition that was the same size

as ./ but which did not include the agents with the highest benefit. In this case, the

8 needed to support this as an SPE is even lower since the lowest benefit is lower

than B^ , and so defection is even more tempting for this lowest benefiting agent

under 6-^
.

Economically, what this is saying is that if the benefits are unequal, and drop off

rapidly, then for the shortest game (highest 6), only the highest benefiting agents

will raise their hands in an SPE. For example, we would predict that if parents

receive high benefits from the playground, and non-parents receive only a little, it

is likely that only the parents will share in the cost in equilibrium. This seems a

agree with everyday experience. But what does it mean for the benefits to be very

unequal? Below we give a sufficient bound on the rate of decline of the benefit

profile for only equal sharing to be an SPE at the highest possible 6.

Lemma 6. Suppose that for all i G iV,
i i i

— < -^tti then for the PCT extension

TiG^'-.S^), .s^" and s^ are the only SPE.

Proof/

16



In this case J* = N. To see this note that for all i E N:

Then apply Lemma 5.

17



4. The Proportional Cost Allocation Problem

Now consider the following one-shot game G^'^ =< N,M,v > where for all

i e N, M' = 3J+, and for all i € N and all m e M:

IB'-C^^
ifm'>0

B'
'

if m' = and 3jeN s.t. mJ >
'li \/ J e N,mJ =0.

We interpret B^ as the private benefit that agent i receives if the public project is

built, and C as the cost of the project. We assume that for all i ^ N,C > B^ > 0.

This is a problem of producing and paying for a discrete level of a public good

in which the cost sharing rule is proportional rather than equal sharing. We find the

proportional sharing rule attractive when all agents tell the truth for several reasons.

First, it is consistent with the benefit theory of taxation. This is a traditional notion

of fairness is public economics. Second, we will show that this solution is identical

to the one proposed by Kalai and Smorodinsky (1975) when we view this situation

as a bargaining problem.

In the one-shot game, if an agent admits to valuing the public good, he is

charged in proportion to his reported value. This means that it is even possible for

agent to be forced to pay more than his true benefit if other agents under-report.

Unfortunately, it is a dominate strategy for agents not to reveal the true benefit

and report a value of zero instead. Of course if no agent reports a positive value

than the project is not built, which is not Pareto optimal.

We show in this section how the PCT mechanism can be used to solve this

classic public goods revelation problem. We assume that the mediator knows only

the total social value of the project. He knows neither the assignment nor the

distribution of the private benefits. Also, as before, the mediator can determine

whether or not a history h belongs to 7i°' , but cannot directly observe the moves

of the agents.
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Let m = (0, ... ,0). If the move m is made, the project is not built, and all

taxes are zero. This is the only Nash equilibrimn of the one-shot game G^'^.

Lemma 7. Suppose C < X]j=i ^^ ^^^^ ^o^ ^ = 1 — ^„^ , s^ is an SPE of

T[GP'', S), if and only if there is k>0 such that m = {kB\..., kB"").

Proof/

First suppose k = 0. Then m = m = (0, . . . ,0). But clearly, s\f^ is an SPE for

any S since it m is the only Nash equilibrium of the one-shot game.

Now suppose that k > 0. To see that s'^^ is also an SPE consider any i E A'^

any h £ Ti. This history could have evolved in one of two ways.

Suppose first that the game has not ended at any given t, that ht G T~i°'
.,
and

that the other agents have been playing kB~^ each round. If i makes the optimal

defection from m' = kB^ then his payoff is SB'. This is because he gets the benefit

of free riding in round t if the game ends. If the game does not end at t then

all agents report in the next round, and the game ends with certainty in the

subsequent round with no public good because of the non-stationary play. On the

other hand, not defecting gets a payoff of B' —
<
-^„ —- since the k's cancel. But

by construction:

SB' =[l- _f ^ \ B^ = B' -
^'^

Thus, it is a best response for i to play kB' since no additional benefit is gained by

defecting.

Suppose on the other hand that at some t £ {1,2,...}, some agent j plays

m^ 7^ kB^. Then by lemma 2, it is a best response for all agents to abide by the

trigger strategy and play m = in all remaining rounds.

Finally, suppose there was another trigger strategy, s^, that was an SPE. But

then for some agent i G N, m' > kB\ In this case:

m'C
SB' ^ [1- —^—— \ B' > B' -

e;=i-^'



and defecting has a higher expected payoff than abiding by the trigger strategy.

Thus we have:

.1 CB^Theorem 2. Suppose C < T";^, B^ . Then if 8 = 1- ^„^ „ ,
{{B^ - ^^^ , . .

.

,

'—^ J '
y til N Ql
^—';=! /—<; = i

>"" B.

Proof/

5" - ^^^"
), (0, . . . , 0)} are tiie oiiiy SPE payoffs of the PCT extension TiGP", 6)

By lemma 7, .s'i^ is an SPE trigger strategies if and only if for some A; > 0,

fh = {kB^ , . .
. , kB^^ ). Then by lemma 3,

h'' = {hen\ wte {1,2,. . .},{kB\. .. ,kB^) et h'},

for all A: > are the only SPE histories. Then since for all k > 0,

Eiim,h,) = {B' - = —,...,5" - ^^^^ — ),

and for k = 0,

these are the only SPE payoffs.

Thus, the mechanism we describe here has the property that if the mediator

knows the sum of the benefits, he can choose 6 such that the only equilibrium payoffs

are sharing in proportion to the benefits, and the one-shot Nash equilibrium in which

the project is not built. We can interpret this game as a bargaining problem. The

disagreement point is (0, ... , 0), the payoffs to the agents if the project is not built.

The best possible situation for any given agent is for project to be built and he free
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rides. Therefore, the Ideal Point (in the sense of Kalai) is just (5^ , . .
.

, B^ ). Notice

that if for some i G A^, B^ increases, the net payoff to that agent,

5.- ^'^

also goes up. Proportional sharing therefore satisfies Restricted Monotomcity. In

addition, sharing costs in proportion to benefits is clearly l)Pareto optimal, 2)

Symmetric when benefits are symmetric and, 3) Scale invariant. Thus, this solution

is just the Kalai-Smorodinsky solution.

Finally, we show that regardless of <5, if the sum of the benefits is less than

the cost, building the project can never be an equilibrium. This is important if

the mediator makes a mistake, or for some reason, incorrectly estimates the total

benefits. It means that a bad projects will never be built regardless of these errors.

Lemma 8. Suppose C > ^"_i B^ . Then for all 6 > 0, .s^"* is the only SPE trigger

strategy of rfG^S^).

Proof/

Clearly, s'^ is an SPE since m is the only Nash equilibrium of the one-shot

game.

To see that there can be no other equilibrium note the following. Since C >

^ _j B^ , for all m 7^ m, it must be that for some agent i E A'^

m' B'
>

Also, for all I e N,

T.U ^' T.U B

'r^>'-
Then for all .5 > 0,

^B' > > B' - „f^^ >B-- '"'^
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Thus, for all S > 0, defecting yields positive expected payoff, while abiding by any

trigger strategy other than one enforcing m yields a negative expected value.
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5. Self Enforcing Optimal Urban Planning

Consider the following one-shot game: G^^ =< N,M,v >. Here each agent

i G iV, chooses between two moves: HP = {CC,MB} (Comply with the Code, or

Maximize private Benefit). Let 4^CC : M -^ {0, . .
.

, n} be a function that gives

the number of agents who agree to comply with the code in any given set of moves.

Then for all i E -V, and all m E M,

'V
s^\B'#CC{m)-C' ifm'=CC

''^'^^ \B'#CC{m) \{m'=MB.

We interpret 5' as the external benefit that agent i receives when any agent under-

takes the socially beneficial action (complying with the code), and C as the private

cost of undertaking this action himself. We assume that for all i E N.C^ > B\

This means that the only Nash equilibrium of the one-shot game is for each agent

to maximize the private benefit of his property. In fact, this is a dominant strategy

equilibrium.

This is a model of an urban planning game. If an agent complies with the code,

he generates benefits for himself and his neighbors. However, the private cost of

comphance is higher than the private benefit. To fix the idea, we can imagine a

group of developers filing plans with the building commission. The random dead-

line aspect might be generated by uncertainty over when the building commission

meets. The game described above is substantially different from the first two. The

problem before was to divide the cost of a discrete level of public good. This game

is directed toward assuring the provision of an efficient level of a positive external-

ity, or the abatement of a negative externality. The attraction of thinking about

this specifically as an urban planning game is that putting up a development is

fundamentally a one-shot proposition.

Let us first consider the case of identical agents. Let
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^ B\N\ -C
B{\N\-l)

fh = (m^...,m'*) = {MB,..., MB), and m = (m*, . . . , m" ) ^ {CC,...,CC}.

Lemma 9. Suppose all agents in the game G^^ are identical. Then for the PCT

extension r(G"'',^*), s^ and s'V^ are the only SPE.

Proof/

Clearly, .s'^ is an SPE for any 6 since it m is the only Nash equilibrium of the

one- shot game.

To see that s'^ is also an SPE consider any i G N any h G 'H. This history

could have evolved in one of two ways.

Suppose first that the game has not ended at any given t, that the other agents

have been playing m~' each round. If i makes the optimal defection from rfi and

tries to free ride, then his expected payoff is 6*{
\
N

\

— l)B. On the other hand,

not defecting gets a payoff o{ B
\
N

\

— C with certainty. But by construction:

6*B{ \N\ -1)= 5^/TJ,
~^

B{ \N\ -1) = B\N\ -C.

Thus it is a best response for i to play CC since no additional benefit is gained by

defecting.

Suppose on the other hand that at some t G {1,2,...}, some agent j plays

m-' ^ ffiK Then by lemma 2 it is a best response for all agents to abide by the

trigger strategy and play FR in all remaining rounds.

Finally, suppose there was another trigger strategy s^ that was an SPE. But

then #CC{m) > 4I^CC{m) and 6* < 1 so

8*B{i^CC{ni) - 1) = 8*B{ \N\ - 1) - 8*B{ \N\ - #CC{m))

= B\N\ -C- S*B{ \N\ - #CC{rh)) > #CC{m)B - C.
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Thus it would be optimal for every agent to defect from any other trigger strategy.

Thus we have:

Theorem 3. Suppose that all the agents are identical. Then for the PCT extension

r(G"P, S*), {{B\N\ - C, . .
.

, 5
I

iV
I

- C), (0, . . . 0)} are the only SPE payoffs.

Proof/

By lemma 9, .sj^* and s"^ are the only SPE trigger strategies. Then by lemma

3,

h = {hen\ V^ G {l,2,...},m G, /"ij,

and

h = {hen\ yte {i,2,...},m g, h},

are the only SPE histories. Thus

{{B\N\ -C,...,B\N\ -C),(0,...0)}

are the only SPE payoffs.

This result also holds if agents are almost identical, or if at least the ratios of

costs to benefits increases sufficiently slowly. It is possible to prove a result similar

to lemma 5 for this game. We will not do so here because the sufficiency condition is

less easy to interpret. But it turns out that if we order the agents so that those with

a lower index have a lower ratio of costs to benefits then if for all i G {1, . .
.

, n — 1},

then for

B'' \N\ - C"
~ B^{\N\ -1)
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the only SPE trigger strategies have all agents abiding by the code or all agents

maximizing private benefits. If the cost-benefit ratio increases faster than this, there

may also be other SPE trigger strategies.
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6. Bertrand Oligopoly

Next we describe the case of constant marginal cost Bertrand oligopolists facing

a known demand curve. For simplicity, we will assume that demand is linear, but

this is easily generalized. Let the demand be given by

and define LPF r^^ -^ {I
\
I C N} :

LPF{m) = {I C N
\

I e I ii and only if V j G iV, m' < m->}.

This correspondence gives the subset of Lowest Priced Firms. Now, consider the

one-shot game G^° =< -V,M, u > where for all i e -V, A/' = ^]f?^, and for all i 6 N

and all m £ M:

( (a-i3m')(m'-C') r r- TUT?( \

v'{m) = I \LPF(m)\ if ' ^ LPF{m)
I otherwise.

Thus, all of the lowest priced firms share the demand equally. Other firms sell

nothing. It is well known that the only Nash equilibrium in the case of identical

firms is for each firm to price at cost. We restrict attention to this case. Let

rh = {C,...,C).

Lemma 10. Suppose all firms are identical. Then for 6 = , ^ , s^ is an SPE trigger

strategy o/^(G''^(^), if and only if for all i,j E N ffi' = mJ , and m G [C, ^§^].

Proof/

First suppose that m = m = (C, ...,C). Then clearly, 5^ is an SPE for any S

since it m is the only Nash equilibrium of the one-shot game.

Now suppose that m G (C, ""t^ ]. To see that s"^ is also an SPE consider any

i E N and any h E 'H. This history could have evolved in one of two ways.
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Suppose first that the game has not ended at any given t, and that the other

agents have been playing 7n~' each round. By hypothesis, the equihbrium price is

below the monopoly price, ""t^ . Thus, optimal defection for any ^ 6 iV is to lower

the price by e and capture all the demand. His expected payoff in this case is

6{a - f3{m - e)){7fi - e - C).

This is because all agents revert to playing C if the game happens not to end in the

round that i defects. On the other hand, by not defecting agent i gets a payoff of

{a — i^m){m — C)

with certainty. But by construction:

xt ,:i(
- \\f ~ r-\ ^ >.( ^-M- n\ (q^ - (3rh)im - C)

d{a — p[m — €)){m — e — C) < o{a — fim}[m — C) = —

—

.

Thus, it is a best response for i to play ifi since no additional benefit is gained by

defecting.

Suppose on the other hand that at some t G {1,2,...}, some agent j plays

rh^ ^ rfiJ . Then by lemma 2 it is a best response for all agents to abide by the

trigger strategy and play m' = C in all remaining rounds.

Finally, suppose there is another trigger strategy, 5^, that is an SPE but does

not satisfy the hypothesis of the lemma. Note first that if s^ is an SPE, then for all

i,j G A^, m' = m-^. This is because any agent who names a price which is not the

lowest receives no profit. Thus for all S > 0, the optimal defection would necessarily

have a positive expected value. Therefore, no agent could name a price above the

lowest price in equilibrium. Second, clearly m > C. Otherwise defection would give

agents positive profits instead of negative profits. Finally, suppose that m > ^^^ .

In this case, it is optimal to defect to the monopoly price. This gives an expected

profit of
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But for all m' > ^^±|^,

_, a + l3C^.a + l3C ^^ ^ (a - /Jm')(m' - C)
o(a )( C > —-—

since it is easy to check that m = "^"t^ is profit maximizing.

Thus we have:

Theorem 4. Suppose that all the agents are identical. Then for the PCT extension

^(G''^^, {
(^-Y^Hp-c-) ^...^

(cv-/inO(m-C)
I

,,^ ^ [C,^]}, are the only SPE

payoffs.

Proof/

2H
By lemma 10,

.^J^
for ryi G [C, ""t^,

'

] are the only SPE trigger strategies. Then

by lemma 3,

h = {hen\ wt e {i,2,...},7n g< h},

for m G [C "^"t^
]
are the only SPE histories. Thus

{a - I3m)(m - C) {a - i3m]{m - C) . ^,„a + liC
i

iW\
••••• m l">e[C,^^l}

are the only SPE payoffs.

Thus, all the mediator needs to know to choose the appropriate S is the number

of firms in the in the market. Equal sharing of the monopoly profit is the unique

Pareto dominant SPE equilibrium payoff.

It may be possible to sharpen this result by requiring that the defecting firm

lower his price by at least a fixed e (instead of the arbitrarily small e here) in order

to capture the market. This seems to reduce the equilibrium set to three elements:
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the monopoly price, the competitive price, and e above the competitive price. The

problem is that these last two are also equilibria of the one-shot game. We therefore

could not use the lemmata proved in the eariy sections since the hypothesis that

there be only one equilibrium in the one-shot game is not met. Consequently, we

do not pursue this further in the current paper.
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7. Chain Store Paradox

In this section we depart from the mechanism design approach above and ad-

dress the positive impHcations of probabilistic cheap talk. Our focus is on the chain

store paradox offered by Selten (1978). However, it should become clear that the

fundamental rationale can be applied to explain the much larger class of phenomena

in which one party needs to make a commitment to an action that appears to be

an irrational choice in a one-shot game.

A resolution of the chain store paradox has previously been suggested by Kreps,

and Wilson (1982) and Milgrom, and Roberts (1982), based on a model of incom-

plete information on the entrant's part regarding the type of the incumbent chain

store. This explanation may be criticized on the grounds that it places too much

reliance on the existence of a "crazy" type of incumbent. It would be desirable to

obtain an explanation for how a chain store could maintain its monopoly without

abandoning the fundamental assumption of ''sanity" which is inherent in virtually

every other model of economic behavior. Such an explanation is given below.

The apparent paradox is as follows. Consider a game, denoted G^^ with two

types of players. The chain store is an incumbent (/) located in k distinct mar-

kets. The potential entrants (i = 1, . . . , A;) must make their decisions sequentially.

Assuming there is a one-to-one correspondence between entrants and markets, we

shall us i to denote both markets and entrants. Entrant i's decision is based upon

the observation of moves made by the entrants and incumbent in previous markets

j = 1, . . . , z — 1. The extensive form of the game between entrant i and incumbent

/ in market i is given in Figure 1.

With i = k = 1, it is clear that the unique SPE of the game is for i to choose

to enter the market (In) and / to choose to acquiesce (Acq). By induction, for

arbitrary k, the unique SPE involves each i entering market i, and / acquiescing
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tuTHi/T

( ) Jirl

Fi^ur

Figure 2

each time. Since it does not make sense to think about an infinity of markets, it is

not possible to turn this into an infinitely repeated game and prove a folk theorem.

How do we rationalize the outcome in which / threatens to fight if there is

entry and the entrant decides to stay out of the market? Consider again i = k = I.

Also, to keep the story simple assume there is a single consumer of the product and

there is some probability each round that he complete the purchase of the good.'^

This is consistent with reality; prices are often set with the expectation that there

will be time to revise the offering before the actual purchase takes place. Up until

the consumer accepts the offer, the prices are cheap talk. The consumer is not

An alternative way of looking at this problem is to assume that the consumer will decide to make a

purchase at some point in the finite time interval [0, T), but that the exact moment is not known.
Thus agents know that a purchase will take place this week, (for example) but can change their

offering prices up until the nioment that the consumer actually happens to walk through to the

door.
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considered a strategic player in this problem.

Consider the following pair of strategies that give the outcome described above.

The incumbent fights each round in which there is entry if he has never acquiesced

in the past, otherwise he acquiesces if there is entry. The entrant stays out each

round unless has entered in the past and the incumbent has acquiesce, in which

case he enters in this and all subsequent rounds. To see that this is indeed an

SPE, suppose the game has lasted until round t, and consider any history of play

hf. There are only two types of subgames for the entrant. If at some point in the

history he has entered and the incumbent acquiesced, it is clearly a best response

to follow the strategy and enter now and in the future. This gives the entrant his

maximal payoff of a. On the other hand, if all previous entrances (if any) to the

market have been fought, then staying out gives a payoff of zero, instead of a loss of

(—a). For the incumbent, we have to show that this strategy is payoff maximizing

in both the subgame in which the entrant comes in and stays out for all ht. If the

incumbent has ever acquiesced to entrance before, then it best response to acquiesce

in the future regardless of the entrant's move. This gives an expected payoff of zero

instead of —a On the other hand, suppose that the all previous entrances have been

fought. Then if the entrant stays out then clearly fighting if there is entry is a best

response. In this case, following the strategy results in the entrant always staying

out in the future, and the incumbent receiving his maximal payoff b whenever the

game happens to end. If the entrant comes into the market, and the incumbent

follows his strategy, there is a probability of <^ that the consumer will make the

purchase and the incumbent will get a payoff of —a. There is a (1 — ^) probability

that he consumer will not make his purchase, the entrant will exit and stay out, and

so the incumbent will get his monopoly profit of b when the game finally ends. Thus

the expected payoff to the incumbent from following the strategy in this subgame

is

S(-a) + {l-S){b).
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Not fighting gives a payoff of zero in round t and in all future rounds. Any attempt

to fight in the future will serve only to lower profits more. Therefore, for small

enough 6, the strategy is a subgame perfect response for the incumbent as well.

Thus, the uncertainly about when the purchase will take place gives the chain

store game a probabilistic cheap talk flavor that can be exploited to explain the

"paradox" without resorting to irrational players. It is probably also possible to get

a similar result with a chain store model in which purchases are made each round,

but there is uncertainty about when the last purchase will be made.
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8. Conclusion

In conclusion, this paper may be viewed as taking an alternative approach to

the problem of implementing social choice functions. The implementation paradigm

is to propose a mechanism that has the allocation suggested by the a given social

choice rule as its unique equilibrium. This is a very hard thing to accomplish in a

completely satisfactory way. The various impossibility results, and the complexity

of many of these mechanisms give testament to this. Our approach is to start with

a very simple mechanism that can applied to any one-shot game. We concentrate

on games in which there is a unique Pareto inefficient Nash equilibrium. This mech-

anism provides a "resolution" to these one-shot games in the sense that the set of

subgame perfect equilibria are Pareto ranked with the Pareto superior solution be-

ing the one chosen by the social choice rule. While this is weaker than implementing

a social choice rule, we argue that it is more than enough to assure that the de-

sirable outcome is achieved. The problem is reduced to one of coordinating on the

SPE which is unanimously strictly preferred by all agents. We give examples which

show that if we are wilUng to be satisfied with this weakening of implementation,

then it is possible to resolve the free rider problem, and the revelation problem in

simple public goods economies, the externality problem, and the prisoners' dilemma

problem of Bertrand oligopoly. These resolutions are possible without violating the

fundamental constraints of one-shot simultaneous move games, or altering the pri-

vate information structure. Moreover, the equilibrium set of the PCT extensions

of the one-shot games always has a unique Pareto dominate SPE which is feasible,

Pareto efficient, and individually rational.
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